創澤機器人
CHUANGZE ROBOT
當前位置: 首頁> 新聞資訊> 機器人開發> 基於多任務學習和負反饋的深度召回模型

基於多任務學習和負反饋的深度召回模型

來源: 阿裏機器智能編輯: 創澤時間:2020/5/21 主題: 其他[ 加盟]

傳統的推薦係統通常由兩部分構成,分別是 Candidate Generation(候選生成)和 Ranking(排序),以下圖中經典的 YouTube 視頻推薦為例[1],整個係統分為了兩層:第一層是 Candidate Generation(候選生成),負責從全量的視頻中快速篩選出幾百個候選視頻,這一步通常也被成為 Matching(召回);第二層是 Ranking(排序),負責對幾百個視頻進行精準打分並重新排序,決定最終向用戶展示的結果順序。






實時識別卡扣成功裝配的機器學習框架

卡扣式裝配廣泛應用於多種產品類型的製造中,卡扣裝配是結構性的鎖定機製,通過一個機器學習框架將人類識別成功快速裝配的能力遷移到自主機器人裝配上。

華南理工大學羅晶博士和楊辰光教授團隊發文提出遙操作機器人交互感知與學習算法

羅晶博士和楊辰光教授團隊提出,遙操作機器人係統可以自然地與外界環境進行交互、編碼人機協作任務和生成任務模型,從而提升係統的類人化操作行為和智能化程度

【深度】未來5-10年計算機視覺發展趨勢為何?

專家(查紅彬,陳熙霖,盧湖川,劉燁斌,章國鋒)從計算機視覺發展曆程、現有研究局限性、未來研究方向以及視覺研究範式等多方麵展開了深入的探討

音樂人工智能、計算機聽覺及音樂科技

音樂科技、音樂人工智能與計算機聽覺以數字音樂和聲音為研究對象,是聲學、心理學、信號處理、人工智能、多媒體、音樂學及各行業領域知識相結合的重要交叉學科,具有重要的學術研究和產業開發價值

讓大規模深度學習訓練線性加速、性能無損,基於BMUF的Adam優化器並行化實踐

Adam 算法便以其卓越的性能風靡深度學習領域,該算法通常與同步隨機梯度技術相結合,采用數據並行的方式在多台機器上執行

基於深度學習和傳統算法的人體姿態估計,技術細節都講清楚了

人體姿態估計便是計算機視覺領域現有的熱點問題,其主要任務是讓機器自動地檢測場景中的人“在哪裏”和理解人在“幹什麼”

傳統目標檢測算法對比

SIFT、PCA-SIFT、SURF 、ORB、 VJ 等目標檢測算法優缺點對比及使用場合比較

基於深度學習目標檢測模型優缺點對比

深度學習模型:OverFeat、R-CNN、SPP-Net、Fast、R-CNN、Faster、R-CNN、R-FCN、Mask、R-CNN、YOLO、SSD、YOLOv2、416、DSOD300、R-SSD

如何更高效地壓縮時序數據?基於深度強化學習的探索

大型商用時序數據壓縮的特性,提出了一種新的算法,分享用深度強化學習進行數據壓縮的研究探索

滴滴機器學習平台調度係統的演進與K8s二次開發

滴滴機器學習場景下的 k8s 落地實踐與二次開發的技術實踐與經驗,包括平台穩定性、易用性、利用率、平台 k8s 版本升級與二次開發等內容

人工智能和機器學習之間的差異及其重要性

機器學習就是通過經驗來尋找它學習的模式,而人工智能是利用經驗來獲取知識和技能,並將這些知識應用於新的環境

麵向動態記憶和學習功能的神經電晶體可塑性研究

神經形態結構融合學習和記憶功能領域的研究主要集中在人工突觸的可塑性方麵,同時神經元膜的固有可塑性在神經形態信息處理的實現中也很重要
資料獲取
機器人開發
==最新資訊==
ChatGPT:又一個“人形機器人”主題
ChatGPT快速流行,重構 AI 商業
中國機器視覺產業方麵的政策
中國機器視覺產業聚焦於中國東部沿海地區(
從CHAT-GPT到生成式AI:人工智能
工信部等十七部門印發《機器人+應用行動實
全球人工智能企業市值/估值 TOP20
必威主頁第十一期上
諧波減速器和RV減速器比較
機器人減速器:諧波減速器和RV減速器
人形機器人技術難點 高精尖技術的綜合
機器人大規模商用麵臨的痛點有四個方麵
青島市機器人產業概況:機器人企業多布局在
六大機器人產業集群的特點
機械臂-高度非線性強耦合的複雜係統
==機器人推薦==
迎賓講解服務機器人

服務機器人(迎賓、講解、導診...)

智能消毒機器人

智能消毒機器人

機器人開發平台

機器人開發平台


機器人招商Disinfection Robot機器人公司機器人應用智能醫療物聯網機器人排名機器人企業機器人政策教育機器人迎賓機器人機器人開發獨角獸消毒機器人品牌消毒機器人合理用藥地圖
版權所有 必威主頁中國運營中心:北京 清華科技園九號樓5層 中國生產中心:山東日照太原路71號
銷售1: 4006-935-088銷售2: 4006-937-088客服電話: 4008-128-728

Baidu
map